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SUMMARY

Numerical simulation of �uid �ow with moving free surface has been performed. For the free surface
�ow, a volume of �uid (VOF)-based algorithm utilizing a �xed grid system has been investigated. In
order to reduce numerical smearing at the free surface represented on a �xed grid system, a new free
surface-tracking algorithm based on the donor–acceptor scheme has been proposed. Novel features of
the proposed algorithm are characterized by two numerical tools; the orientation vector to represent
the free surface orientation in each cell and the baby-cell to determine the �uid volume �ux at each
cell boundary. The proposed algorithm can be easily implemented in any irregular non-uniform grid
systems usually encountered in the �nite element method (FEM). Moreover, the proposed algorithm can
be extended and applied to the 3D free surface �ow problems without additional e�orts. For computation
of unsteady incompressible �ow, a �nite element approximation based on the explicit fractional step
method has been adopted. In addition, the streamline upwind=Petrov–Galerkin (SUPG) method has
been implemented to deal with convection dominated �ows. Combination of the proposed free surface-
tracking scheme and the explicit fractional step formulation resulted in an e�cient solution algorithm.
Validity of the present solution algorithm was demonstrated from its application to the broken dam and
the solitary wave propagation problems. Copyright ? 2003 John Wiley & Sons, Ltd.

KEY WORDS: free surface; volume of �uid (VOF) method; orientation vector; baby-cell; �xed grid
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1. INTRODUCTION

When the free surface �ow is analysed numerically, two problems should be addressed. One
is to identify the free surface location at present time step and the other is to update the
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Figure 1. Numerical analysis of �uid �ow with moving free surface. Di�culties arise from the problems
associated with: (a) identifying and (b) update of free surface location.

location at the next time step for a given �ow �eld (see Figure 1). In order to trace the moving
free surface, a number of methods have been proposed. Those can be categorized into two
groups, i.e. moving grid method and �xed grid method [1]. In the moving grid method, also
known as the Lagrangian method [2–5], grid points are embedded in the �uid and move
with it (see Figure 2(a)). The �uid always coincides with the region to be analysed and each
computational cell contains the same �uid elements. Therefore, free surface can be delineated
speci�cally and can be traced precisely. Also, free surface boundary conditions can be applied
on the exact material interfaces. However, many problems with the complicated geometry may
occur. The Lagrangian method is apt to fail when the �uid undergoes large deformation. Mesh
may become highly distorted and cause numerical inaccuracy in the solution of the �ow �eld.
Furthermore, the number of grid points changes and thus remeshing or rezoning process should
be carried out after each movement or several movements of the free surface, resulting in
large computation time. On the other hand, to avoid shortcomings associated with severe
mesh distortion in the Lagrangian methods, an algorithm implementing a continuous rezoning
process has been proposed. The algorithm is referred as the arbitrary Lagrangian–Eulerian
(ALE) method [6]. The ALE method allows the grid points to move with a relative velocity
with respect to the �uid [7–9].
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Figure 2. Numerical methods for the �uid �ow with moving free surface. Moving grids: (a) Lagrangian
method, and �xed grids, (b) MAC method and (c) VOF method.

In the �xed grid method, also called the Eulerian method, mesh is treated as a �xed refer-
ence frame through which the �uid moves. The initially generated mesh is used throughout the
entire computation and thus no geometric di�culty arises. Therefore, the �xed grid method
can remarkably reduce computational e�orts compared to the moving grid method. Further-
more, it facilitates easy extension to the 3D problems. However, the �xed grid method has
some shortcomings associated with determination of free surface location. The nodal points are
�xed at their initial positions and the free surface is located between some of them. Therefore,
the free surface is liable to lose its intrinsic nature of sharp discontinuity and thus special
schemes are required to avoid the numerical smearing. Volume tracking method is known as
the numerical technique which has a potential of dealing with large free surface deformation
on the �xed grids. Two methods have been widely accepted (see Figures 2(b) and (c)): the
marker and cell (MAC) method [10–15] and the volume of �uid (VOF) method [16–33]. In
the VOF method, free surface location is determined by solving a transport equation for a
parameter representing the fractional �uid volume in a cell. Along with a number of VOF-
based algorithms, several schemes have been also proposed to avoid the phenomenon of
numerical smearing. However, some schemes proposed are very complicated even for 2D
problems and, in some cases, result in excessive numerical smearing on the free surface. Con-
sequently, there has been an increasing demand for a simple and e�cient free surface-tracking
algorithm that can deal with large free surface motion with minimal numerical smearing and
can also be applied to 3D problems without additional e�orts. Recently, Rider and Kothe [31],
Guey�er et al. [34], and Harvie and Fletcher [35] proposed schemes to advance the �ow front
using the geometric and Lagrangian aspects of the VOF transport equation. Also, Harvie and
Fletcher [36] used the stream function for updating the �ow �eld.
The objective of present study is to develop a practical numerical algorithm for the analysis

of free surface �ow problems. Particularly, a study has been performed to improve solution
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accuracy associated with the free surface-tracking scheme in the �xed grid system. The free
surface-tracking scheme should satisfy the following requirements: (a) it should have a simple
structure to be implemented easily in any existing CFD codes, regardless of the solution
algorithms of �ow �eld; (b) it should accommodate free surfaces with large deformation on
any irregular non-uniform �xed grid systems; (c) it should be applicable to 3D problems
without additional e�orts. In this study, a new free surface-tracking scheme satisfying these
requirements has been proposed. In order to verify the validity of proposed scheme, the
broken dam problem and the solitary wave propagation problem have been analysed and
the performance of the overall solution procedure was demonstrated. The simulated results
obtained by applying the proposed numerical algorithm to the practical 2D and 3D cavity
�lling and sloshing problems can be found in a separate article [37]. Also, the applicability
of the proposed free surface-tracking scheme in an irregular non-uniform mesh has been
demonstrated from the simulated results of a simple sloshing problem [33].

2. VOF METHOD

In the VOF method [16], free surface is represented on the �xed grids using fractional �uid
volume in a cell (or in a control volume). Each rectangle in Figure 2(c) denotes a unit
cell. The fractional volume-of-�uid, f, is de�ned such that it is equal to unity at any point
occupied by the �uid and zero elsewhere. As the free surface moves, the fractional volume-of-
�uid of each cell is updated. In a numerical sense, every cell is classi�ed into three categories
according to the value of f (see Figure 2(c)). If a cell is completely �lled with �uid, the
fractional volume-of-�uid of the cell is unity (f=1) and the cell is considered to be in the
main �ow region. If a cell is empty (f=0), it belongs to an empty region and its contribution
to the computation of �ow �eld is excluded. A cell is considered to be on the free surface
when the values of f lies between 0 and 1 (0¡f¡1). A similar concept of ‘fractional �uid
volume’ can be found in the �ow analysis network (FAN) method [38, 39]. The FAN-type
method basically assumes a quasi-steady Hele–Shaw �ow in a thin channel. Movement of
free surface is accomplished by calculating net mass �uxes through control surfaces and by
updating the fractional �uid volume in each control volume. Application of the FAN-type
method can be found in the simulations of injection molding process [40] and resin transfer
molding [41].
Hirt and Nichols [16] presented the VOF method by introducing a transport equation of f

and by exploiting the donor–acceptor scheme [14]. Discontinuity in f propagates according
to the following transport equation:

@f
@t
+ u · ∇f=0 (1)

where u denotes the velocity vector which can be found from solution of the �ow �eld.
By solving Equation (1), distribution of f is obtained and thus free surface location can
be identi�ed. In a physical sense, Equation (1) implies mass conservation of one phase in
the mixture. Numerically, Equation (1) is characterized as a hyperbolic or pure convection
equation.
Since the movement of free surface is accomplished by solving Equation (1) in the VOF

method, instead of deforming the mesh as in the Lagrangian method or tracing marker particles
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as in the MAC method, an overall solution algorithm becomes simple and e�cient. Combined
with advantages of �xed grids which can accommodate complex geometry, the VOF method
is adaptable to any existing CFD codes regardless of the solution methods such as FDM,
FVM or FEM. For this reason, the VOF-based methods have been used extensively in the
simulation of general free surface �ow problems. Several extended or modi�ed versions of
the VOF method can be found elsewhere [17–32].
However, the VOF-based method has di�culties in determining a free surface location

on the �xed grids. It is well known that the numerical solution of Equation (1) tends to
smear. The gradient of f, which should be singular at the moving boundary in physical
reality, becomes �nite in the numerical solution. This phenomenon is known as a ‘false
numerical di�usion’. Therefore, the success of the VOF-based methods is strongly dependent
on its ability of transporting f through the �xed grids with minimal numerical smearing. In
order to suppress the numerical smearing, various schemes have been proposed. Generally,
those schemes are categorized into two groups, depending on how the transport equation
(Equation (1)) is treated. Some researchers have attempted to solve Equation (1) directly
[20, 24–26, 28]. They considered f as another unknown variable and obtained a solution of
Equation (1) discretized on a computational mesh. On the other hand, Takewaki et al. [42]
proposed a cubic-interpolated propagation (CIP) method to solve hyperbolic equations. In the
CIP method, which is based on the fact that not only a variable but also its spatial deriva-
tive propagates with the velocity, the spatial pro�le within each grid is interpolated with
a cubic polynomial. A uni�ed 2D hyperbolic solver, which can treat solid, liquid and gas
simultaneously, was developed and applied to various problems. Recently, Makuuchi et al.
[43] presented an implicit CIP method in 2D which can overcome the limitation of time
step size in the explicit scheme. Other researchers have traced the free surface location using
volume �ux-based schemes on a staggered mesh in �nite volume or �nite di�erence frame-
works [16, 17, 19, 21, 23, 29–32, 44–46]. They improved or modi�ed the advection schemes
such as the donor–acceptor scheme [14] and the van Leer scheme [47].

3. NEW FREE SURFACE-TRACKING SCHEME

In order to transport f with minimal numerical smearing in the VOF method, a new free
surface-tracking algorithm is proposed. In the proposed algorithm, free surface location is
traced by calculating �uid volume �uxes on the �xed �nite element mesh and by updating
the values of f using the donor–acceptor scheme. In the following, discussions are made on
how the actual �uid volume �ux through the cell boundary can be evaluated by considering
both the free surface orientation and the value of f in each cell.

3.1. Wet-out fraction at cell boundary

In order to trace the free surface location on a �xed mesh using a volume �ux-based scheme,
�uid volume �uxes through every cell boundary should be calculated. When using the VOF
method, f is de�ned for the cell, not on the node. This means that in contrast to the mo-
mentum or energy equations, another scheme is required to integrate the transport equation
of f (Equation (1)). In the present study, �nite elements are treated as cells (or control
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Figure 3. De�nitions of (a) cell, face and facial normal vector and (b) wet-out fraction, f�j .

volumes). The transport equation of f written in a conservative form is integrated over each
�nite element (cell) as follows: ∫

V

[
@f
@t
+ u · ∇f

]
dV =0 (2)

To handle the time derivative in Equation (2), explicit time integration has been adopted.
Generally, implicit integration gives a solution with higher accuracy, but requires more com-
plex and time-consuming algorithm. In the explicit integration, on the other hand, values at
the new time step are updated from those at the old time step using the known �ow �eld. In
the present study, explicit integration has been adopted for simplicity in updating the free sur-
face location. After the divergence theorem is applied and the time integration is performed,
Equation (2) is reduced to

fnewi =foldi +
�t
Vi

[
−∑

j
(f�ju · n)Aj

]
(3)

where the subscripts i and j represent the cell and the face numbers, respectively. fnewi and
foldi denote the values of f in the ith cell at the new and the old time steps. �t is the
size of time increment, Vi is the volume of the ith cell and Aj is the area of the jth face.
u and n are the velocity and the unit outward normal vectors at the jth face, respectively
(see Figure 3(a)). From Equation (3), it can be stated that the change in �uid volume in
a cell during a given time interval is equal to the net �uid volume �ux through every cell
boundary. Here, f�j represents the ‘actual fractional volume-of-�uid’ at the jth face of the ith
cell during a given time increment [30]. Also, f�j can be interpreted as the wet-out fraction
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at a cell boundary, which indicates to what extent the cell boundary is wetted by the �uid
(see Figure 3(b)). The basic idea underlying the wet-out fraction is similar to the ‘e�ective
�owing time’ in the net in�ow method [46].

f�j =
�uid volume transferred through �j
total volume transferred through �j

(4)

In general, f�j in Equation (3) is dependent upon the free surface orientation and the value
of f in the cell as well as the size of time increment �t. However, due to the explicit
nature of the time integration adopted in this study, dependency of f�j on �t becomes out
of question. As a result, f�j is a function of the free surface orientation and fi so that

f�j =f�j(free surface orientation; fi) (5)

3.2. Orientation vector representing free surface con�guration

In order to �nd free surface con�guration in a cell, the status of neighbouring cells should
be taken into consideration as stated in Equation (5). In the present study, to avoid consid-
ering a large number of cases or introducing complex functional forms as in previous studies
[16, 17, 19, 21, 23, 29–32, 44–46], the orientation vector, r, is de�ned in a cell as

r=

∑
j(fij · Vij)nj∣∣∣∑j(fij · Vij)nj

∣∣∣ (6)

where fij and Vij represent the fractional volume-of-�uid and the volume of the cell adjacent
to the jth face of the ith cell, respectively. nj denotes the outward unit vector normal to the
jth face, �j.
As can be seen in Equation (6), orientation vector is obtained by considering how the

values of f in the neighbouring cells are distributed. The orientation vector was made to be
unity in magnitude through normalization and was designed to indicate the direction where
�uid is abundant (see Figure 4(a)). The free surface con�guration in a cell is then assumed
to be perpendicular to the orientation vector. From the de�nition, the orientation vector is
a�ected by the characteristics of the grid system (through Vij and nj in Equation (6)). When
a regular grid system of uniform mesh is used, orientation vectors can produce exact free
surface con�guration within the accuracy in the solution of f �eld. Even in a non-uniform
grid system, they can give approximate con�guration of free surface as long as the mesh
does not have extremely large aspect ratio. In most of the practical numerical computations,
non-uniform grid systems have little in�uence on the evaluation of orientation vector since the
grids are generated in such a way that they are not severely distorted. In the present study,
however, in order to take into account a possible in�uence of various aspect ratios in any
arbitrary non-uniform grid system, Equation (6) is modi�ed as

r=

∑
j(fij · Vij)ajnj∣∣∣∑j(fij · Vij)ajnj

∣∣∣ (7)
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Figure 4. De�nition of orientation vector, r.

where aj denotes the ratio of the jth facial area to the total facial area of the ith cell. Thus,
aj satis�es

∑
j aj=1. Here, aj can be considered as a weighting factor used to take non-

uniformity of aspect ratios into consideration. In other words, aj accounts for a tendency that
when two neighbouring cells have the same value of f, the actual free surface con�guration
in a cell becomes parallel with a face of larger facial area (see Figure 4(b)).
When the jth face is a solid wall, there exists no neighbouring cell to refer to in that

direction. In such a case, a virtual cell is assumed to exist across the solid wall. The virtual
cell is then supposed to have a speci�c value of f so that the distribution of f can take a
linear variation in a local region adjacent to the solid wall. This is expressed as

fij( j= solid wall) = min[max(fi +�f; 0); 1] (8)

where �f denotes the di�erence in values of f in the ith cell and in the cell opposite to the
solid wall. Symmetric planes can be handled in a similar manner.
From the orientation vector, information on the orientation (i.e. slope) of free surface in a

cell can be obtained. Therefore, it can be assumed that the free surface in a cell is a straight
line in 2D or a plane in 3D which is normal to the orientation vector. In the proposed
scheme, the slope of free surface in a cell is �rst obtained and the location of free surface
represented by a straight line (in 2D) or a plane (in 3D) is then adjusted according to the
value of f of the cell. Hence, the proposed free surface-tracking scheme can be classi�ed
as a sort of PLIC (piecewise linear interface calculation) method [23, 29–31, 45] in contrast
to SLIC (simple line interface calculation) method [44]. However, the common di�culty
encountered in such volume �ux-based schemes lies in the determination of �uid volume �ux
at the cell boundary. For that matter, the baby-cell method utilizing a linear mapping in the
�nite element method is proposed (Section 3.3). Orientation vector is not used to simply
represent the free surface as a straight line (in 2D) or a plane (in 3D) locally, but utilized
as a reference for the determination of �uid volume �ux at the cell boundary (Section 3.3).
In addition, from an algorithmic standpoint for embodiment of the basic idea, the baby-cell
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method preserves a simple structure consistently in 2D and 3D, while previous PLIC methods
resort to complicated algorithms even in 2D and the extension to 3D requires a much more
complicated algorithmic structure.

3.3. Baby-cells representing uniform sub-volumes

Now that free surface con�guration in a cell has been found from the orientation vector,
actual �uid volume �uxes at the cell boundaries can be determined with reference to the
value of f in the cell. However, even for the same free surface con�guration, there may
exist a great number of di�erent cases according to the values of f. The actual �uid volume
�ux through each cell boundary should be determined depending on which face of the cell
and how much of that face is wetted by the �uid, rather than how much of the cell is �lled
with the �uid (i.e. the value of f). In this study, baby-cells are utilized for this purpose. The
baby-cells are de�ned in a master element (of FEM) in such a way that they can divide the
volume of the master element into uniform sub-volumes with equal volumetric contribution
(see Figure 5). Corresponding baby-cells in a physical element can be obtained using a linear
mapping between the master and the physical elements. The name of baby-cell implies that one
baby-cell in the master element has the one and only counterpart in every physical element.
If the physical element is distorted, corresponding baby-cells become also distorted, but still
have equal volumetric contribution (i.e. they still represent uniform sub-volumes). This is
because the determinant of the Jacobian matrix in the linear transformation is constant over
one physical element. Linearity of the transformation adopted in the present �nite element
formulation makes this process possible.
The baby-cell method proposed in this study is based on the use of an arbitrary irregular

non-uniform �xed mesh composed of quadrilateral elements in 2D and hexahedral elements
in 3D. Therefore, while baby-cells in the master element have a shape of a regular square
in 2D or a regular hexahedron in 3D, those in a physical element of the arbitrary irregular
non-uniform mesh have a shape of a general quadrangle in 2D or a general hexahedron in
3D, following the shape of the physical element. The baby-cells are utilized to determine the
wet-out fraction at each cell boundary in the following manner:

(1) A plane, which is normal to the orientation vector, r, and passes through the centroid
of a cell, is assumed (see Figure 6(a)). The plane does not have to pass through

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:765–790
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Figure 6. Schematic illustration of the procedure for evaluating wet-out fraction at the cell boundary:
(a) Construct a reference plane normal to the orientation vector, r; (b) �ll baby-cells sequentially
and (c) estimate the accumulated contribution from the �lled baby-cells to each cell boundary.

the centroid necessarily because it is used as only a reference plane. That is, the
plane plays a single role of determining the relative distance of each baby-cell from
itself.

(2) Baby-cells are assumed to be �lled up in sequence beginning with the farthest one
from the reference plane in the positive direction of orientation vector until fractional
�uid volume of the cell reaches its value of f (see Figure 6(b)).

(3) Contributions of the �lled baby-cell to each cell boundary are estimated. Consequently,
the accumulated contribution from all the �lled baby-cells gives wet-out fraction at each
cell boundary (see Figure 6(c)).

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:765–790
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Following the above procedure, the actual �uid volume �ux through each cell boundary
can be evaluated. Proposed scheme can trace the moving free surface with minimal numerical
smearing because it is based on the physical observation. Furthermore, the proposed scheme
needs almost no extra computer storage because baby-cells are created utilizing the existing
transformation in FEM. Also, the proposed scheme imposes little amount of burden on com-
putation time as the above procedure is carried out only on the free surface cells. This free
surface-tracking procedure took 10% or less of the total computation time. In the present study,
the number of baby-cells was chosen as 1600 (=40× 40) in 2D and 1000 (=10× 10× 10)
in 3D. A larger number of baby-cells can yield higher resolution in the estimation of wet-out
fraction. In the present calculation, however, the use of a much larger number of baby-cells
did not make a big di�erence in the overall solution accuracy. From de�nition, the number
of baby-cells can a�ect the accuracy in the calculation of wet-out fractions at the cell bound-
aries. Although the e�ects of the number of baby-cells on the accuracy of solution were not
investigated in this study, simple consideration shows that the maximum error in the estimated
wet-out fraction is 2.5% (=1=40) for 1600 baby-cells in 2D and 1% (=1=10× 10) for 1000
baby-cells in 3D.

4. GOVERNING EQUATIONS AND FINITE ELEMENT FORMULATION

Governing equations and the boundary conditions for the �ow �eld are described in this
section. Finite element formulation to solve the equations is also given.

4.1. Governing equations and boundary conditions

Following assumptions are made for the computation of the �ow �eld:

(1) Moving free surface exists between two immiscible �uids.
(2) Flow is incompressible, viscous and laminar.
(3) Fluids have constant properties.

Governing equations are the continuity equation and the unsteady Navier–Stokes equations
for laminar �ow of incompressible Newtonian �uids.

ui; i =0 (9)

@ui
@t
+ ujui; j =−1

��
p; i + �ij; j + Si (10)

where �ij= ��(ui; j + uj; i). Here, �� and �� represent the density and the kinematic viscosity,
respectively. �� and �� for the free surface cells (0¡f¡1) are obtained using the rule of
mixture.
To complete the problem description, an appropriate set of boundary conditions should be

speci�ed. In general, the essential boundary condition is given as

ui= bi on �1 (11)
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The natural boundary condition can be written as[
−1
��
p�ij + �ij

]
nj= ti on �2 (12)

Here, �1 and �2 are two non-overlapping subsets of the piecewise smooth domain boundary
�. bi is the velocity vector prescribed on �1 and ti is the traction vector prescribed on �2. nj
is the unit outward vector normal to �2.
Initial condition for Equation (10) is given by specifying a velocity �eld, which satis�es

Equation (9) at the initial state.

u(x; 0)= u0(x) with ∇ · u0 = 0 (13)

On the solid wall, no-slip or frictionless boundary conditions can be given. In many
cases, frictionless boundaries can be assumed between the �uid and the wall (e.g. References
[3, 4, 9, 15, 19, 32]). Impermeable boundary is also assumed at the wall. Therefore, frictionless
boundary condition on the solid wall can be expressed as

uini=0 and
[
−1
��
p�ij + �ij

]
sj=0 (14)

Here, sj denotes the vector tangential to the solid wall boundary.
While the boundary conditions on the solid wall are straightforward, those on the free sur-

face should be imposed carefully. In the present study, second �uid is kept at the atmospheric
pressure, which is taken to be zero. It is also assumed that the stress normal to the free surface
is equal to any externally applied normal stress and the stress tangential to the free surface
is zero. If surface tension is neglected, above assumptions lead to the following traction-free
condition. [

−1
��
p�ij + �ij

]
nj=0 (15)

4.2. Finite element formulation and fractional step method

The spatial domain is discretized with four-node isoparametric quadrilateral elements in 2D
and eight-node isoparametric hexahedral elements in 3D. Velocity is represented by bilinear
or trilinear polynomials in an element and is de�ned at all vertices of each element. Pres-
sure is piecewise constant within an element and is de�ned at the centroid of each element.
Equations (9) and (10) are discretized using the Galerkin approximation. Semi-discretized
equation for u, which is an ordinary di�erential equation (ODE) in time, is obtained as

Mu̇+C(u)u+Ku −Hp− F= 0 (16)

For detailed de�nition of matrices, see, for example, Reference [48].
The continuity equation (Equation (9)) is discretized on the basis of element as

follows [15]:

hTeue=0 (e=1; 2; 3; : : : ;NE) (17)

Here, NE denotes the total number of �nite elements participating in the computation.
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In the present study, Equation (16) was integrated in time using the explicit fractional time-
stepping method [15]. Fractional step method has been originally proposed by Chorin [49] in
the �nite di�erence framework. In this method, the pressure gradient term is decoupled from
those of convection, di�usion and other external forces. In this procedure, the intermediate
velocity does not necessarily satisfy the continuity constraint. Thus, the end-of-step velocity
is obtained by adding the dynamic e�ect of unknown pressure to the intermediate velocity.
That is, at the next step, the pressure is obtained from the continuity constraint and the
velocity is corrected [15, 49–53]. In the explicit element-by-element fractional step method
[15], the intermediate velocity is obtained by integrating Equation (16) explicitly. The velocity
correction is then made by adjusting the pressure of each element in such a way that local
divergence of the velocity in the element vanishes. For a detailed procedure, one can refer to
Reference [15].
Another important point in the formulation of Navier–Stokes equations is that the numerical

algorithm should be able to resolve the convection-dominated nature of the �ow. Scalar quan-
tities in the incompressible �ow �eld are transported along the streamline when the di�usion
e�ect is negligible compared to the convection. Based on this idea, the anisotropic balancing
di�usion method [54] and the consistent streamline upwind=Petrov–Galerkin (SUPG) method
[55] have been proposed. In the present study, the consistent SUPG method has been adopted
to deal with the convection dominated �ow.

5. SOLUTION PROCEDURE

Using the free surface-tracking scheme and the solution method of Navier–Stokes equations
described in the previous sections, the solution procedure can be summarized as follows
(see Figure 7)

(1) De�ne the problem. For a given geometry
• specify material properties and parameters;
• generate a mesh system;
• obtain information on mesh topology;
• specify boundary and initial conditions.

(2) Identify the computational domain. The cells which have f values greater than 0.5 are
supposed to comprise the computational domain [19]. In the following step, specify
the velocity on the new computational domain. Newly included domain has nodes at
which velocity is not yet determined and remains zero (Equation (20)).

(3) For the given free surface con�guration, obtain velocity and pressure �elds at the new
time step.

(4) With the new �ow �eld, update the location of the free surface:
• obtain orientation vectors on every free surface cell;
• estimate the wet-out fractions at every cell boundary;
• determine the size of the time increment (Equation (19));
• advance the free surface.

(5) Repeat steps (2)–(4) until the prescribed �nal time is reached.
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Mesh 
Material properties

Boundary conditions

Initial conditions 

Identify computational domain

Velocity at new nodes 

Velocity & pressure field 

Orientation vectors 

Wet-out fractions 

Determine time step size 

Advance the free surface 

Done? 

Stop 

No

Yes

Figure 7. Solution procedure for the �uid �ow with moving free surface.

In this study, emphasis is placed on the new free surface-tracking scheme that can trace
the free surface with minimal numerical smearing. The proposed free surface-tracking scheme
became much more e�cient when combined with the fractional step method in the solution of
Navier–Stokes equations. In addition to the explicit time integration methods adopted in the
momentum equations and the transport equation of f, the diagonal lumped mass matrix rep-
resentation was introduced to improve both speed and e�ciency of overall solution algorithm.
The consistent mass matrix M was replaced with a diagonal mass matrix using a standard
row-sum technique [50].

5.1. Size of time increment and stability consideration

Though the explicit time integration methods adopted in the momentum equations as well as
in the transport equation of f are simple and fast, the solution procedure may become unsta-
ble when the size of time increment becomes too large. However, it has been reported that
the explicit time integration method in combination with the diagonal lumped mass matrix
representation showed a good performance in general [50]. Also, it should be kept in mind
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that even though the implicit time integration methods do not su�er from stability restric-
tion, they do not always guarantee good accuracy at a large Courant number. In the explicit
method, stability limit of the time step size is given by the following restriction in the CFL
number

CFL=
( |u|
�x

+
|v|
�y

+
|w|
�z

)
�t61 (18)

The size of time increment in the VOF method should be determined so that the �uid
cannot be transported through more than one cell during a single time increment [16]. In this
study, the �uid volume �uxes through cell boundaries are estimated �rst. The size of time
increment is then determined in such a way that the net incoming �uid volume should not
exceed the empty volume of a cell and the net outgoing �uid volume should not exceed the
present �uid volume in a cell during a single time step �t [32].
For a cell with positive net volume �ux:

�t6
(1− fi)Vi

[−∑
j(f�ju · n)Aj]

(19a)

For a cell with negative net volume �ux:

�t6
(0− fi)Vi

[−∑
j(f�ju · n)Aj]

(19b)

The smallest time increment from the above equations is chosen so that the criterion
is satis�ed simultaneously in all the cells within the computational domain. Accordingly,
Equation (18) is satis�ed automatically.

5.2. Velocity speci�cation at new nodes

When we proceed to the next computational time step, a region may exist which is excluded
from or included into the computational domain due to retreat or advance of the free surface.
In particular, the newly included region often has nodes at which velocity is not yet determined
and remains zero. Therefore, a procedure assigning reasonable values of velocity to such new
nodes is needed. In the present study, velocity at the newly added node is obtained from
the average velocities of neighbouring cells through the volume-weighted averaging [15] (see
Figure 8),

unew node =
∑
�ue · Ve∑
Ve

(20)

where unew node represents the velocity at the new node. �ue and Ve represent the average
velocity and the volume of neighbouring cell, respectively.

6. VERIFICATION OF NUMERICAL SCHEME

In order to verify the validity of the proposed scheme, broken dam problem and solitary
wave propagation problem have been analysed. Numerical examples tested in this study
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Figure 8. New nodes entering the computational domain.

have been challenged through various experimental, numerical and analytical approaches. For
the broken dam problem, experimental data [56] as well as numerically simulated results
[5, 8–10, 15, 16, 19, 32, 46] are available, while for solitary wave propagation problem, exper-
imental data [57], numerical results [7, 9, 11] and analytical solution [58, 59] can be found.
On the other hand, simulated results of practical 3D �ow problems with large free surface
deformation (e.g. cavity �lling problems and sloshing problems) obtained with the proposed
numerical scheme can be found in separate articles [33, 37].

6.1. Broken dam problem

As a �rst example, the broken dam problem is considered. This problem is selected because
the initial �ow con�guration is simple and the experimental data are available as well [56].
Since both advance and retreat of the free surface exist, this problem enables one to test the
free surface-tracking technique more thoroughly. Therefore, many numerical works have been
performed for the problem [5, 8–10, 15, 16, 19, 32, 46].
The de�nition of the problem is illustrated in Figure 9. A rectangular column of water in

hydrostatic equilibrium is con�ned between a vertical wall and the gate. The gate is suddenly
removed at time t=0+ and the water column starts to collapse under the in�uence of gravity,
forming an advancing water wave to the right. An initial �ow con�guration was chosen as a
square column (H ×H; H =0:05175m), following the experimental condition by Martin and
Moyce [56]. Boundary conditions are shown in Figure 9. Frictionless boundary conditions
are speci�ed on the bottom and the vertical walls. Density and viscosity of water are taken
as 1000 kg=m3 and 1× 10−3 Pa:s, respectively. The ambient �uid is air. Density is 1 kg=m3
and viscosity is 1× 10−5 Pa:s. The gravitational acceleration is g=9:8m=s2. To investigate the
in�uence of grid system on the simulated results, four meshes of di�erent grid density have
been used; three uniform meshes (31× 13; 49× 20; 61× 25) and a non-uniform mesh (49× 20,
see Figure 10).
Free surface pro�les and corresponding pressure contours obtained with the non-uniform

49× 20 mesh are shown in Figure 11. The water column starts to collapse from the upper right.
The water wave then accelerates rapidly along the �oor in the right direction as time elapses. In
Figure 12, the position of water wave front and the height of residual water column are plotted
as functions of elapsed time, and compared with the experimental data [56]. For convenience,
dimensionless time and length are de�ned as t∗= t

√
(g=H) and x∗= x=H , respectively. All the
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Figure 9. Broken dam problem.
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Figure 10. Non-uniform 49× 20 mesh used for the broken dam problem.

results obtained with four di�erent meshes show good agreement, with a slight deviation in
the result obtained with a uniform 31× 13 mesh, which has the smallest number of nodes in
the present calculation. Good agreement with the experimental data indicates that the present
numerical scheme is capable of predicting the collapse of water column accurately.

6.2. Solitary wave propagation

As a second example, propagation of a solitary wave is analysed. Solitary wave is de�ned as
a single wave elevated above the surrounding undisturbed water level, travelling only in the
direction of wave propagation with a constant velocity throughout the observable time interval.
Laitone [58] and Byatt-Smith [59] obtained an analytic solution for the inviscid surface wave
in the in�nitely long channel. Maxworthy [57] carried out experiments on the interaction of
single wave with vertical wall. Numerical studies have been also performed using various
approaches. The MAC method was used by Chan and Street [11] and the ALE method was
employed by Ramaswamy and Kawahara [7] and Choi [9].
De�nition of the problem is shown in Figure 13. The �uid is water and the ambient is air.

Properties of water and air are identical as in the broken dam problem. Analytic solutions are

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:765–790



782 M. S. KIM AND W. I. LEE
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Figure 11. Free surface pro�les (left) and pressure contours (right) for the broken dam problem.
(a) 0:01 s, (b) 0:02 s, (c) 0:04 s, (d) 0:06 s, (e) 0:08 s, (f) 0:10 s, (g) 0:12 s and (h) 0:13 s.

obtained for an in�nitely long channel, while computation should be done in a �nite domain.
Fluid at a distance from the wave crest is essentially still. Therefore, the �ow domain is taken
so that the dimension in the direction of wave propagation is su�ciently large compared to
the wave height. Referring to [7], depth of still water and horizontal length between two
vertical walls are taken as d=1 (m) and L=16 (m), respectively. Boundary and initial
conditions are shown in Figure 14. Frictionless boundary conditions were speci�ed on the
bottom and the vertical walls. For comparison, initial conditions were given following the
Laitone’s approximation of the solitary wave [58].
Calculations were carried out for H=d=0:20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50 and 0.55.

The mesh used for H=d=0:40 consists of non-uniform 81× 37 grids (see Figure 15). For
H=d=0:40, velocity vectors and pressure contours at the initial stage are shown in Figures
16(a) and 17(a), respectively. The calculated wave pro�les and corresponding velocity vector
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Figure 12. (a) The position of the water wave front and (b) the height of the residual
water column as functions of time. Comparison of the numerical results using four

di�erent grids with the experimental data [56].
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Figure 13. Propagation of a solitary wave.
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Figure 14. Boundary and initial conditions for the solitary wave propagation problem.

�elds are shown in Figure 16, while the pressure contours are shown in Figure 17. The initial
kinetic energy is converted into potential energy at the vertical wall as shown in Figures
16(c) or 16(g). Pressure remains almost hydrostatic and this agrees well with the Laitone’s
analytic solution [58]. Maximum run-up of the solitary wave against the vertical wall is shown
in Figure 18 for various incident wave heights. The maximum run-up attained by the wave
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Figure 15. Non-uniform 81× 37 mesh used for the solitary wave propagation problem.
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(c)

(d)
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(f)

(g)

(h)

(i)

Figure 16. Wave pro�les and velocity vectors for the solitary wave propagation problem. (a) 0 s,
(b) 1:2 s, (c) 2:3 s, (d) 3:4 s, (e) 4:6 s, (f) 5:7 s, (g) 6:9 s, (h) 8:1 s and (i) 9:3 s.

is always greater than twice the initial wave height. Byatt-Smith [59] obtained an explicit
expression for the maximum run-up Rmax=d of a solitary wave of initial wave height H=d,

Rmax
d
=2

(
H
d

)
+
1
2

(
H
d

)2
+O

[(
H
d

)3]
(21)

In Figure 18, the present results show good agreement with other numerical and experimen-
tal results. It is clearly seen that there exists no numerically induced damping e�ect. Compared
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Figure 17. Pressure contours for the solitary wave propagation problem. (a) 0 s, (b) 1:2 s, (c) 2:3 s,
(d) 3:4 s, (e) 4:6 s, (f) 5:7 s, (g) 6:9 s, (h) 8:1 s and (i) 9:3 s.

with the analytic solution, a negative spatial phase shift is observed in the computed results.
This spatial phase shift is attributable to the �nite time of interaction at the vertical wall.
In Figure 19, the magnitude of spatial phase shift for H=d=0:40 is �X=d ≈ −1:3 and this
agrees favorably with the experimental observation [57].

7. CONCLUDING REMARKS

A new VOF-based algorithm has been proposed for the simulation of transient free surface
�ow problems. The new free surface-tracking scheme is characterized by the orientation vec-
tor and the baby-cell. Orientation vector gives information on the free surface orientation in
a cell by inspecting the distribution of f in the vicinity. In order to trace the free surface
on a �xed mesh using the volume �ux-based scheme, the actual �uid volume �ux through
cell boundary should be evaluated. For that purpose, the baby-cell was devised to repre-
sent uniform sub-volume at the designated position in a cell. Without introducing additional
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Figure 18. Maximum run-up height of the solitary wave against the vertical wall for various incident
wave heights. Comparison of the present numerical results with previous works.
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present numerical results with the analytic solution [58].
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functional expressions, baby-cells were constructed by utilizing a mapping characteristic in
FEM. With orientation vector and baby-cell, free surface could be traced with minimal nu-
merical smearing. Validity of the proposed free surface-tracking scheme has been shown
from simulation of broken dam and solitary wave propagation problems. The simulated re-
sults have also demonstrated excellent performance of overall solution algorithm. Furthermore,
with a relatively simple structure, the proposed scheme can be easily implemented in 3D
problems.

NOMENCLATURE

Aj area of the jth face
aj ratio of the jth facial area to the total facial area
bi velocity boundary condition
C(u) convection matrix
F force matrix
f fractional volume-of-�uid of cell
f�j wet-out fraction at the jth face
H pressure gradient matrix
he element pressure gradient matrix
K di�usion matrix
M consistent mass matrix
n unit outward normal vector
p pressure
r orientation vector
Si external force vector
t time
�t time increment
ti traction boundary condition
u velocity vector
u; v; w velocity components
Vi volume of the ith cell

Greek letters

�j the jth cell boundary
�� coe�cient of kinematic viscosity
�� density
�ij viscous stress tensor

Subscripts

e element
i cell number
j face number
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